

1

FACULTY OF ENGINEERING AND TECHNOLOGY

CSCP408 – Database Management Systems Lab

ANNAMALAI

 UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING

B.E. [Computer Science and Engineering]

IV – SEMESTER

CSCP408 – DATABASE MANAGEMENT SYSTEMS LAB

CONTENTS

S. No. List of Experiments

1.
Data Definition Language Statements

a) Without constraint
b) With constraint

2.
Data Manipulation Language Statements
(insert, update, select, delete and truncate)

3.

a) Transaction Control Statements
(commit, save point, rollback)

b) Data Control Statement
(grant & revoke)

4.
Data Projection Statements

(multi-column, alias name, arithmetic operations, distinct record, concatenation, where
clause)

5.
Data Selection Statements
(between...and, in, not in, like, relational operators, logical operators)

6.
Aggregate Functions
(count, maximum, minimum, sum, average, order by, group by, having)

7.
Join Queries
(inner joins, outer joins(left, right, full), equi -join, non-equi join, self-join and cartesian join or
cross-join)

8.
Sub-queries
(in, not in, some, any, all, exits, not exits)

9.
Set Operations
(union, union all, intersect, minus)

10.

Database Objects
a) Synonym
b) Sequences
c) Views
d) Index

11. Cursors

12.
a) Procedures
b) Functions

13. Triggers

14. Exceptions

15. Packages

A1 Batch Dr. S. G. Santhi

A2 Batch Dr. R. Saminathan

 Page 1 of 84

1. Data Definition Language Statements
a. Without Constraint

Aim:
 To work with DDL queries like create, alter, modify, rename and drop without any constraints.

Concept:

SQL Structured Query Language (SQL) is a standard computer language for

relational database management and data manipulation. SQL is used to
query, insert, update and modify data.

DDL A data definition language or data description language (DDL) is syntax
similar to a computer programming language for defining data structures,
especially database schemas.

Create The CREATE TABLE statement is used to create a table in a database.
Create table table_name (colname datatype, colname datatype……);

Alter The SQL ALTER TABLE command is used to add, delete or modify
columns in an existing table.
Alter table table_name add column_name data_type;
Alter table table_name drop column column_name;
Alter table table_name modify column_name new_data_type;

Rename Rename statement is used to rename the existing column name and table
name.
Alter table table_name rename old_col_name to new_col_new;
alter table old_table_name rename to new_table_name;

Drop The DROP TABLE statement removes a table added with the CREATE
TABLE statement i.e., the entire schema of the table created is removed.
Drop table table_name;

Queries:

Create:

Creation of a table:
SQL> create table std

(
sname varchar2(10),
roll number(5),
dept varchar(3),
m1 number(3),
m2 number(3),
m3 number(3)
);

Table created.

 Page 2 of 84

Describe the table std:

SQL> desc std;

Name Null? Type
SNAME VARCHAR2(10)
ROLL NUMBER(5)
DEPT VARCHAR2(3)
M1 NUMBER(3)
M2 NUMBER(3)
M3 NUMBER(3)

Alter - ADD:

Add columns to the table:

SQL> alter table std add

(
total number(4),
avg number(4),
result varchar2(6)
);

Table altered.

SQL> desc std;

 Name Null? Type
SNAME VARCHAR2(10)
ROLL NUMBER(5)
DEPT VARCHAR2(3)
M1 NUMBER(3)
M2 NUMBER(3)
M3 NUMBER(3)
TOTAL NUMBER(4)
AVG NUMBER(4)
RESULT VARCHAR2(6)

Alter - Modify:

Modify the data type of the field of the table:

SQL> alter table std modify sname varchar2(25);

Table altered.

 Page 3 of 84

SQL> desc std;
 Name Null? Type
 SNAME VARCHAR2(25)
 ROLL NUMBER(5)
 DEPT VARCHAR2(3)
 M1 NUMBER(3)
 M2 NUMBER(3)
 M3 NUMBER(3)
 TOTAL NUMBER(4)
 AVG NUMBER(4)
 RESULT VARCHAR2(6)

Alter - Rename:

Rename the column name of the table:

SQL> alter table std rename total to sum;

Name Null? Type
 SNAME VARCHAR2(25)
 ROLL NUMBER(5)
 DEPT VARCHAR2(3)
 M1 NUMBER(3)
 M2 NUMBER(3)
 M3 NUMBER(3)
 SUM NUMBER(4)
 AVG NUMBER(4)
 RESULT VARCHAR2(6)

Renaming the Table:

SQL> alter table std rename to stud;

Table altered.

SQL> desc stud;

 Name Null? Type
 SNAME VARCHAR2(25)
 ROLL NUMBER(5)
 DEPT VARCHAR2(3)
 M1 NUMBER(3)
 M2 NUMBER(3)
 M3 NUMBER(3)
 TOTAL NUMBER(4)
 AVG NUMBER(4)
 RESULT VARCHAR2(6)

 Page 4 of 84

Alter – Drop column:

Remove a column from the table:

SQL> Alter table std drop column (SNAME); [Works with the version 8.1 onwards]

Name Null? Type

 ROLL NUMBER(5)
 DEPT VARCHAR2(3)
 M1 NUMBER(3)
 M2 NUMBER(3)
 M3 NUMBER(3)
 TOTAL NUMBER(4)
 AVG NUMBER(4)
 RESULT VARCHAR2(6)

Table altered.

Drop - Table:

Remove the table from the database:

SQL> drop table stud;

Table dropped.

Result:

Thus, different DDL queries like create, alter, modify, rename and drop without any constraints
is successfully executed and verified.

 Page 5 of 84

1. Data Definition Language Statements
b. With Constraint

Aim:
 To work with DDL queries like create, alter, modify, rename and drop with any constraints like

 Not null
 Unique
 Primary key
 Foreign key
 Check
 Default

Concept:

Constraints Constraints enable the RDBMS to enforce the integrity of the database
automatically, without needing to create any triggers, rule or defaults.

Entity
integrity

The entity integrity constraint states that primary keys can't be null. There must
be a proper value in the primary key field. This is because the primary key value
is used to identify individual rows in a table. If there were null values for
primary keys, it would mean that we could not identify those rows.

Referential
integrity

When one table has a foreign key to another table, the concept of referential
integrity states that one may not add a record to the table that contains the
foreign key unless there is a corresponding record in the linked table.

Not null Constraint enforces that the column will not accept null values. The not null
constraints are used to enforce domain integrity, as the check constraints

Check Constraint is used to limit the values that can be placed in a column. The check
constraints are used to enforce domain integrity.

Unique Constraint enforces the uniqueness of the values in a set of columns, so no
duplicate values are entered. The unique key constraints are used to enforce
entity integrity as the primary key constraints

Primary key Constraint is a unique identifier for a row within a database table. Every table
should have a primary key constraint to uniquely identify each row and only one
primary key constraint can be created for each table. The primary key constraints
are used to enforce entity integrity

Foreign key Constraint prevents any actions that would destroy link between tables with the
corresponding data values. A foreign key in one table points to a primary key in
another table. Foreign keys prevent actions that would leave rows with foreign
key values when there are no primary keys with that value. The foreign key
constraints are used to enforce referential integrity

Default The DEFAULT constraint is used to insert a default value into a column.

 Page 6 of 84

Queries:

Create - Table with Constraints (Primary key, not null, unique and default value):

SQL> create table stud
 (

rno number primary key,
sname varchar2(30) not null,
dept char(5),
sem number,
dob date,
email_id varchar2(20) unique,
faculty varchar2(15) default 'Engineering'

);

Table created.

SQL> desc stud;

Name Null? Type
 RNO NOT NULL NUMBER
 SNAME NOT NULL VARCHAR2(30)
 DEPT CHAR(5)
 SEM NUMBER
 DOB DATE
 EMAIL_ID VARCHAR2(20)
 FACULTY VARCHAR2(15)

Create - Table with Constraints (Primary key, foreign key, check constraint)

 SQL> create table exam

 (
 regno number primary key,
 rno number references stud(rno),
 dept char(5) not null,
 mark1 number check (mark1<=100 and mark1>=0),
 mark2 number check (mark2<=100 and mark2>=0),
 mark3 number check (mark3<=100 and mark3>=0),
 mark4 number check (mark4<=100 and mark4>=0),
 mark5 number check (mark5<=100 and mark5>=0),
 total number,
 average number,
 grade char(1)
);

Table created.

SQL> desc exam;

 Page 7 of 84

Name Null? Type

REGNO NOT NULL NUMBER
RNO NUMBER
DEPT NOT NULL CHAR(5)
MARK1 NUMBER
MARK2 NUMBER
MARK3 NUMBER
MARK4 NUMBER
MARK5 NUMBER
TOTAL NUMBER
AVERAGE NUMBER
GRADE CHAR(1)

Result:
 Thus, different DML queries with different constraints are successfully executed and verified.

 Page 8 of 84

2. Data Manipulation Language Statements
(insert, update, select, delete and truncate)

Aim:
 To work with DML queries like insert, update select, delete and truncate statements

Concept:

DML A data manipulation language (DML) is a family of syntax elements similar to a
computer programming language used for selecting, inserting, deleting and
updating data in a database.

Insert The insert into statement is used to insert new records in a table.

Insert into table_name (col1, col2….) Values (val1, val2….);

Insert into table_name values(val1, val2,……);

Insert into table_name values(&col1, &col2,…..);

Update The update query is used to modify the existing records in a table. With where
clause particular row or record can alone be update

Update table table_name set column_name = new_value where column_name =
value;

Delete The delete query is used to delete the existing records from a table. With where
clause particular row or record can alone be deleted

Delete from table_name where column_name = value;

Select Select statement is used to fetch the data from a database table which returns data
in the form of result table.

Select column_name from table_name;

Select * from table_name;

Select distinct column_name(s) from table_name;

Select column_name(s) from table_name where column_name in (value1,
value2,……);

Select column_name from table_name where column_name between value1 and
value2;

Select * from table_name where <condition> order by column_name asc/desc;

Truncate The truncate table command is used to delete the complete data from an existing
table without affecting its structure.

Truncate table table_name;

 Page 9 of 84

SQL> create table std
(
sname varchar2(10),
roll number(5),
dept varchar(3),
m1 number(3),
m2 number(3),
m3 number(3)
);

Table created.

Insert :

Insert values into the table:

SQL> insert into std values ('&name','&roll','&dept','&m1','&m2','&m3');
Enter value for name: Kanthi
Enter value for roll: 5353
Enter value for dept: CSE
Enter value for m1: 75
Enter value for m2: 85
Enter value for m3: 80
old 1: insert into std values ('&name','&roll','&dept','&m1','&m2','&m3')
new 1: insert into std values ('Kanthi','5353','CSE','75','85','80')

1 row created.

SQL> insert into std values ('Mathi',6363,'CSE',50,60,70);

1 row created.

SQL> insert into std values ('Ram',111,'CSE',60,70,80);

1 row created.

SQL> insert into std values ('Rahim',222,'CSE',65,65,80);

1 row created.

SQL> insert into std values ('Josepth',333,'CSE',70,70,85);

1 row created.

SQL>insert into std (roll, dept, m1, m2, m3,sname) values (55,'ECE',50,50,65,'Banu');

1 row created.

 Page 10 of 84

Select :

Display all the records available in the table selected.

SQL> select * from std;

SNAME ROLL DEP M1 M2 M3
Kanthi 5353 CSE 75 85 80
Mathi 6363 CSE 50 60 70
Ram 111 CSE 60 70 80
Rahim 222 CSE 65 65 80
Josepth 333 CSE 70 70 85
Banu 55 ECE 50 50 65

6 rows selected.

SQL> alter table std add

(
total number(4),
avg number(4),
grade varchar2(1)
);

Table altered.

SQL> desc std;

Name Null? Type
 SNAME VARCHAR2(10)
 ROLL NUMBER(5)
 DEPT VARCHAR2(3)
 M1 NUMBER(3)
 M2 NUMBER(3)
 M3 NUMBER(3)
 TOTAL NUMBER(4)
 AVG NUMBER(4)
 GRADE VARCHAR2(1)

Update – using addition operator +:

SQL> update std set total = (m1+m2+m3);

6 rows updated.

 Page 11 of 84

SQL> select * from std;

SNAME ROLL DEP M1 M2 M3 TOTAL AVG Grade
Kanthi 5353 CSE 75 85 80 240
Mathi 6363 CSE 50 60 70 180
Rahim 222 CSE 65 65 80 210
Ram 111 CSE 60 70 80 210
Josepth 333 CSE 70 70 85 225
Banu 55 ECE 50 50 65 165

6 rows selected.

Update – using division operator / :

SQL> update std set avg = total/3;

6 rows updated.

SQL> select * from std;

SNAME ROLL DEP M1 M2 M3 TOTAL AVG Grade
Kanthi 5353 CSE 75 85 80 240 80
Mathi 6363 CSE 50 60 70 180 60
Rahim 222 CSE 65 65 80 210 70
Ram 111 CSE 60 70 80 210 70
Josepth 333 CSE 70 70 85 225 75
Banu 55 ECE 50 50 65 165 55

6 rows selected.

Update – using where condition:

SQL> update std set grade='S' where avg >=75;

2 rows updated.

SQL> update std set grade = 'A' where avg >= 70 and avg <75;

2 rows updated.

SQL> update std set grade ='B' where avg >= 60 and avg < 70;

1 row updated.

SQL> update std set grade ='C' where avg >=50 and avg < 60;

1 row updated.

 Page 12 of 84

SQL> select * from std;

SNAME ROLL DEP M1 M2 M3 TOTAL AVG Grade
Kanthi 5353 CSE 75 85 80 240 80 S
Mathi 6363 CSE 50 60 70 180 60 B
Rahim 222 CSE 65 65 80 210 70 A
Ram 111 CSE 60 70 80 210 70 A
Josepth 333 CSE 70 70 85 225 75 S
Banu 55 ECE 50 50 65 165 55 C

6 rows selected.

Delete:

Deleting the particular record using where clause:

SQL> delete from std where roll = 55;

1 row deleted.

SQL> select * from std;

SNAME ROLL DEP M1 M2 M3 TOTAL AVG Grade
Kanthi 5353 CSE 75 85 80 240 80 S
Mathi 6363 CSE 50 60 70 180 60 B
Rahim 222 CSE 65 65 80 210 70 A
Ram 111 CSE 60 70 80 210 70 A
Josepth 333 CSE 70 70 85 225 75 S

SQL> insert into std (roll, dept, m1, m2, m3,sname) values (55,'ECE',50,50,65,'Banu');

1 row created.

SQL> truncate table std;

Table truncated.

SQL> select * from std;

no rows created.

Result:

Thus, different DML statements like insert, update, delete, truncate and select with different
where conditions are successfully executed and verified.

 Page 13 of 84

3. a) Transaction Control Statements
(commit, savepoint, rollback)

Aim:
 To understand the transaction control statements like commit, savepoint and rollback.

Concept:

Properties of Transactions:

Transactions have the following four standard properties, usually referred to by the acronym ACID:

 Atomicity: Ensures that all operations within the work unit are completed successfully;
otherwise, the transaction is aborted at the point of failure, and previous operations are rolled
back to their former state.

 Consistency: Ensures that the database properly changes states upon a successfully committed
transaction.

 Isolation: Enables transactions to operate independently of and transparent to each other.

 Durability: Ensures that the result or effect of a committed transaction persists in case of a
system failure.

Transaction Control Statements:

Commit The commit saves all transactions to the database since the last
commit or rollback statement permanently.

Rollback Used to undo transactions that have not already been saved to the
database. The rollback statement can only be used to undo
transactions since the last commit or rollback statement was issued.

Savepoint Creates points within groups of transactions, used to roll the
transaction back to a certain point without rolling back the entire
transaction.

This serves only in the creation of a savepoints among transactional
statements. The rollback is used to undo a group of transactions.

Release
savepoint

The release savepoint is used to remove a savepoint created.

Set transaction The set transaction statement can be used to initiate a database
transaction.
This command is used to specify characteristics for the transaction to
be read only, or read write.

 Page 14 of 84

Queries:
Case 1: [Create the table student with the following Structure]

SQL> select * from student;

ROLL SNAME DEPT SEM

101 ram IT 5

102 rahim IT 3

103 saravanan CSE 3

104 Nataraj IT 3

105 Elango CSE 5

106 kannan CSE 5

SQL> savepoint s1;

Savepoint created.

SQL> insert into student values (555,'AKN','AGRI',8);

1 row created.

SQL> savepoint s2;

Savepoint created.

SQL> select * from student;

ROLL SNAME DEPT SEM

101 ram IT 5

102 rahim IT 3

103 saravanan CSE 3

104 Nataraj IT 3

105 Elango CSE 5

106 kannan CSE 5

555 AKN AGRI 8

7 rows selected.

SQL> delete from student where roll = 101;

1 row deleted.

 Page 15 of 84

SQL> select * from student;

ROLL SNAME DEPT SEM

102 rahim IT 3

103 saravanan CSE 3

104 Nataraj IT 3

105 Elango CSE 5

106 kannan CSE 5

555 AKN AGRI 8

6 rows selected.

SQL> rollback to s2;

Rollback complete.

SQL> select * from student;

ROLL SNAME DEPT SEM

101 ram IT 5

102 rahim IT 3

103 saravanan CSE 3

104 Nataraj IT 3

105 Elango CSE 5

106 kannan CSE 5

555 AKN AGRI 8
7 rows selected.

SQL> rollback to s1;

Rollback complete.

SQL> select * from student;

ROLL SNAME DEPT SEM

101 ram IT 5

102 rahim IT 3

103 saravanan CSE 3

104 Nataraj IT 3

105 Elango CSE 5

106 kannan CSE 5
6 rows selected.

 Page 16 of 84

Case 2:

SQL> insert into student values (555,'AKN','AGRI',8);

1 row created.

SQL> delete from student where roll = 101;

1 row deleted.

ROLL SNAME DEPT SEM

102 rahim IT 3

103 saravanan CSE 3

104 Nataraj IT 3

105 Elango CSE 5

106 kannan CSE 5

555 AKN AGRI 8

SQL> rollback;

Rollback complete.

SQL> select * from student;

ROLL SNAME DEPT SEM

101 ram IT 5

102 rahim IT 3

103 saravanan CSE 3

104 Nataraj IT 3

105 Elango CSE 5

106 kannan CSE 5
6 rows selected

Case 3:

SQL> insert into student values (555,'AKN','AGRI',8);

1 row created.

SQL> delete from student where roll = 101;

1 row deleted.

 Page 17 of 84

SQL> select * from student;
ROLL SNAME DEPT SEM

102 rahim IT 3

103 saravanan CSE 3

104 Nataraj IT 3

105 Elango CSE 5

106 kannan CSE 5

555 AKN AGRI 8

6 rows selected.

SQL> commit;

Commit complete.

SQL> rollback s1;
rollback s1
 *
ERROR at line 1:
ORA-02181: invalid option to ROLLBACK WORK

SQL> rollback;

Rollback complete.

SQL> select * from student;

ROLL SNAME DEPT SEM

102 rahim IT 3

103 saravanan CSE 3

104 Nataraj IT 3

105 Elango CSE 5

106 kannan CSE 5

555 AKN AGRI 8

6 rows selected.

Result:
 Thus, the transaction control statements like commit, savepoint and rollback is studied and
verified.

 Page 18 of 84

3. b) Data Control Statements
(grant and revoke)

Aim:
 To understand the data control statements like grant and revoke statements.

Concept:

DCL commands are used to enforce database security in a multiple user database environment.
Two types of DCL commands are Grant and Revoke. Only Database Administrator's or owner's of the
database object can provide/remove privileges on a database object.

Grant Grant is used to provide access or privileges on the database objects to the
users.

Revoke Revoke removes user access rights or privileges to the database objects

The Syntax of GRANT staement:

GRANT privilege_name
ON object_name
TO {user_name |PUBLIC |role_name}
[WITH GRANT OPTION];

privilege_name - is the access right or privilege granted to the user. Some of the
access rights are ALL, EXECUTE, and SELECT

object_name - is the name of an database object like TABLE, VIEW, STORED
PROC and SEQUENCE

user_name - is the name of the user to whom an access right is being granted

Public - is used to grant access rights to all users

Roles - are a set of privileges grouped together

With grant option - allows a user to grant access rights to other users

SQL> GRANT SELECT ON employee TO user1;

This statement grants a SELECT permission on employee table to user1.

Use the WITH GRANT option carefully because for example if the GRANT SELECT
privilege on employee table is given to user1 using the WITH GRANT option, then user1 can GRANT
SELECT privilege on employee table to another user, such as user2 etc. Later, if even the SELECT
privilege on employee is revoked from user1, still user2 will have SELECT privilege on employee
table.

 Page 19 of 84

REVOKE Statement:

The Syntax for the REVOKE command is:
REVOKE privilege_name
ON object_name
FROM {user_name |PUBLIC |role_name}

SQL> REVOKE SELECT ON employee FROM user1;

This statement will REVOKE a SELECT privilege on employee table from user1. When the
SELECT privilege on a table from a user is revoked, the user will not be able to SELECT data from
that table anymore. However, if the user has received SELECT privileges on that table from more than
one users, he/she can SELECT from that table until everyone who granted the permission revokes it.
One cannot REVOKE privileges if they were not initially granted.

Privileges and Roles:

Privileges:

A privilege defines the access rights provided to a user on a database object. There are two
types of privileges.

1) System privileges - This allows the user to CREATE, ALTER, or DROP database objects.

2) Object privileges - This allows the user to EXECUTE, SELECT, INSERT, UPDATE, or
DELETE data from database objects to which the privileges apply.

Few CREATE system privileges are listed below:

System Privileges Description

CREATE object allows users to create the specified object in their own schema.

CREATE ANY object allows users to create the specified object in any schema.

The above rules also apply for ALTER and DROP system privileges.

Few of the object privileges are listed below:

Object Privileges Description

INSERT allows users to insert rows into a table.

SELECT allows users to select data from a database object.

UPDATE allows user to update data in a table.

EXECUTE allows user to execute a stored procedure or a function.

 Page 20 of 84

Roles:

Roles are a collection of privileges or access rights. When there are many users in a database it
becomes difficult to grant or revoke privileges to users. Therefore, if user define roles, user can grant
or revoke privileges to users, thereby automatically granting or revoking privileges. Users can either
create Roles or use the system roles pre-defined by oracle.

Some of the privileges granted to the system roles are:

System Role Privileges Granted to the Role

CONNECT
CREATE TABLE, CREATE VIEW, CREATE SYNONYM, CREATE
SEQUENCE, CREATE SESSION etc.

RESOURCE
CREATE PROCEDURE, CREATE SEQUENCE, CREATE TABLE,
CREATE TRIGGER etc. The primary usage of the RESOURCE role is to
restrict access to database objects.

DBA ALL SYSTEM PRIVILEGES

Creating Roles:

The Syntax to create a role:

CREATE ROLE role_name
[IDENTIFIED BY password];

To create a role called "developer" with password as "pwd", the code will be as follows

CREATE ROLE testing
[IDENTIFIED BY pwd];

It's easier to GRANT or REVOKE privileges to the users through a role rather than assigning a
privilege directly to every user. If a role is identified by a password, then, when user GRANT or
REVOKE privileges to the role, user definitely have to identify it with the password.

GRANT or REVOKE privilege to a role:

e.g.: Grant CREATE TABLE privilege to a user by creating a role ‘testing’:

First: Create a testing Role

SQL> CREATE ROLE testing

Second: Grant a CREATE TABLE privilege to the ROLE testing. User can add more privileges to the
ROLE.

SQL> GRANT CREATE TABLE TO testing;

 Page 21 of 84

Third: Grant the role to a user.

SQL> GRANT testing TO user1;

e.g.: Revoke a CREATE TABLE privilege from the role ‘testing’:

SQL> REVOKE CREATE TABLE FROM testing;

The Syntax to drop a role from the database:

DROP ROLE role_name;

Drop a role called ‘testing’, user can write:

SQL> DROP ROLE testing;

Result:
 Thus, the data control statements like grant and revoke is studied and verified with roles.

 Page 22 of 84

4. Data Projection Statements
 (multiple - column, alias-name, arithmetic operations,

distinct record, concatenation, where clause)

Aim:
 To understand the data projection statements with multiple-column, alias-name, arithmetic
operations, distinct record, concatenation and where clause

Queries: [Note: Use the previously created table std]

Required / Multiple – Column:

SQL> select sname, roll from std;

SNAME ROLL
Kanthi 5353
Mathi 6363
Ram 111
Rahim 222
Josepth 333
Banu 55

6 rows selected.

Alias – name for the column of the table:

SQL> select sname Stud_name, Roll Roll_No from std;

STUD_NAME ROLL_NO
Kanthi 5353
Mathi 6363
Ram 111
Rahim 222
Josepth 333
Banu 55

6 rows selected.

Arithmetic Operation:

SQL> select sname name, total Total, Total+10 New_total from std;

NAME TOTAL NEW_TOTAL
Kanthi 240 250
Mathi 180 190
Ram 210 220
Rahim 210 220
Josepth 225 235
Banu 165 175

6 rows selected.

 Page 23 of 84

Distinct Record / Row:

SQL> select distinct dept DeptName from std;

DEPTNAME
CSE
ECE

Concatenation:

SQL> select sname||roll Login_Id from std;

LOGIN_ID
Kanthi5353
Mathi6363
Ram111
Rahim222
Josepth333
Banu55

6 rows selected.

where clause:

SQL> select * from std where dept='ECE';

SNAME ROLL DEP M1 M2 M3 TOTAL AVG G
Banu 55 ECE 50 50 65 165 55 C

SQL> select sname, roll from std where dept ='ECE';

SNAME ROLL
Banu 55

SQL> select * from std where total >200;

SNAME ROLL DEP M1 M2 M3 TOTAL AVG G
Kanthi 5353 CSE 75 85 80 240 80 S
Ram 111 CSE 60 70 80 210 70 A
Rahim 222 CSE 65 65 80 210 70 A
Josepth 333 CSE 70 70 85 225 75 S

SQL> select * from std where total <200;

SNAME ROLL DEP M1 M2 M3 TOTAL AVG G
Mathi 6363 CSE 50 60 70 180 60 B
Banu 55 ECE 50 50 65 165 55 C

Result:

Thus, the data projection statements with multiple-column, alias-name, arithmetic operations,
distinct record, concatenation and where clause was performed and verified.

 Page 24 of 84

5. Data Selection Statements
(between…and, in, not in, like, relational operators, logical operators)

Aim:
 To understand select statements with different options like between…and, in, not in, like,
relational operators, logical operators

Queries: [Note: Use the previously created table std.]

SQL> create table std1 as select * from std where 1=2;

Table created.

[Creating table by copying only the structure of the existing table without its record]

SQL> desc std1;

Name Null? Type
 SNAME VARCHAR2(10)
 ROLL NUMBER(5)
 DEPT VARCHAR2(3)
 M1 NUMBER(3)
 M2 NUMBER(3)
 M3 NUMBER(3)
 TOTAL NUMBER(4)
 AVG NUMBER(4)
 GRADE VARCHAR2(1)

SQL> select * from std1;

no rows selected

SQL> create table std2 as select * from std;

Table created.

[Note: Creating table by copying the structure of the existing table along with its records]

SQL> select * from std2;

SNAME ROLL DEP M1 M2 M3 TOTAL AVG G
Kanthi 5353 CSE 75 85 80 240 80 S
Mathi 6363 CSE 50 60 70 180 60 B
Ram 111 CSE 60 70 80 210 70 A
Rahim 222 CSE 65 65 80 210 70 A
Josepth 333 CSE 70 70 85 225 75 S
Banu 55 ECE 50 50 65 165 55 C

6 rows selected.

 Page 25 of 84

between … and :

SQL> select * from std2 where m2 between 65 and 75;

SNAME ROLL DEP M1 M2 M3 TOTAL AVG G
Ram 111 CSE 60 70 80 210 70 A
Rahim 222 CSE 65 65 80 210 70 A
Josepth 333 CSE 70 70 85 225 75 S

SQL> insert into std2 values ('Madhan',4343,'MEC',50,60,70,180,60,'B');

1 row created.

SQL> insert into std2 values ('Ragu',4433,'MCA',75,75,90,240,80,'S');

1 row created.

SQL> select * from std2;

SNAME ROLL DEP M1 M2 M3 TOTAL AVG G
Kanthi 5353 CSE 75 85 80 240 80 S
Mathi 6363 CSE 50 60 70 180 60 B
Ram 111 CSE 60 70 80 210 70 A
Rahim 222 CSE 65 65 80 210 70 A
Josepth 333 CSE 70 70 85 225 75 S
Banu 55 ECE 50 50 65 165 55 C
Madhan 4343 MEC 50 60 70 180 60 B
Ragu 4433 MCA 75 75 90 240 80 S

8 rows selected.

in statement:

SQL> select sname, roll from std2 where dept in ('MEC','MCA');

SNAME ROLL
Madhan 4343
Ragu 4433

not in statement:
SQL> select sname, dept, roll from std2 where dept not in ('CSE');

SNAME DEP ROLL
Banu ECE 55
Madhan MEC 4343
Ragu MCA 4433

3 rows selected.

 Page 26 of 84

like statement:

SQL> select sname,roll from std2 where sname like 'R%';

SNAME ROLL
Ram 111
Rahim 222
Ragu 4433

SQL> select sname, roll, dept from std2 where sname like '%a%';

SNAME ROLL DEP
Kanthi 5353 CSE
Mathi 6363 CSE
Ram 111 CSE
Rahim 222 CSE
Banu 55 ECE
Madhan 4343 MEC
Ragu 4433 MCA

7 rows selected.

SQL> select sname, roll from std2 where sname like 'R_m';

SNAME ROLL
Ram 111

SQL> select sname, roll from std2 where sname like 'R%m';

SNAME ROLL
Ram 111
Rahim 222

SQL> select sname, roll, dept from std2 where dept like '%E';

SNAME ROLL DEP
Kanthi 5353 CSE
Mathi 6363 CSE
Ram 111 CSE
Rahim 222 CSE
Josepth 333 CSE
Banu 55 ECE

6 rows selected.

 Page 27 of 84

SQL> select * from std2;

SNAME ROLL DEP M1 M2 M3 TOTAL AVG G
Kanthi 5353 CSE 75 85 80 240 80 S
Mathi 6363 CSE 50 60 70 180 60 B
Ram 111 CSE 60 70 80 210 70 A
Rahim 222 CSE 65 65 80 210 70 A
Josepth 333 CSE 70 70 85 225 75 S
Banu 55 ECE 50 50 65 165 55 C
Madhan 4343 MEC 50 60 70 180 60 B
Ragu 4433 MCA 75 75 90 240 80 S

8 rows selected.

SQL> insert into std2 values ('Arun',4333,'MCA',75,75,90,240,80,'S');

1 row created.

SQL> insert into std2 values ('Arunchalam',2222,'ECE',75,75,90,240,80,'S');

1 row created.

SQL> insert into std2 values ('Deva',5555,'MEC',75,75,90,240,80,'S');

1 row created.

SQL> select sname, roll, dept from std2;

SNAME ROLL DEP
Kanthi 5353 CSE
Mathi 6363 CSE
Ram 111 CSE
Rahim 222 CSE
Josepth 333 CSE
Banu 55 ECE
Madhan 4343 MEC
Ragu 4433 MCA
Arun 4333 MCA
Arunchalam 2222 ECE
Deva 5555 MEC

11 rows selected.

 Page 28 of 84

Relational Statements:

SQL> select sname, roll, dept from std2 where roll > 5000;

SNAME ROLL DEP
Kanthi 5353 CSE
Mathi 6363 CSE
Deva 5555 MEC

SQL> select sname, roll, dept from std2 where roll < 5000;

SNAME ROLL DEP
Ram 111 CSE
Rahim 222 CSE
Josepth 333 CSE
Banu 55 ECE
Madhan 4343 MEC
Ragu 4433 MCA
Arun 4333 MCA
Arunchalam 2222 ECE

Logical Statements:

SQL> select sname, roll, dept from std2 where roll > 5000 and dept=’CSE’;

SNAME ROLL DEP
Kanthi 5353 CSE
Mathi 6363 CSE
Deva 5555 MEC

3 rows selected.

SQL> select sname, roll, dept from std2 where dept = 'ECE' or dept = 'MCA';

SNAME ROLL DEP
Banu 55 ECE
Ragu 4433 MCA
Arun 4333 MCA
Arunachalam 2222 ECE

4 rows selected.
SQL> select sname, roll, dept from std2 where roll < 5000 and dept in(‘CSE’,’MCA’);

SNAME ROLL DEP
Ram 111 CSE
Rahim 222 CSE
Josepth 333 CSE
Ragu 4433 MCA
Arun 4333 MCA

 Page 29 of 84

SQL> select sname, roll, dept from std2 where roll < 5000 and dept = 'CSE' or dept = 'MCA';

SNAME ROLL DEP
Ram 111 CSE
Rahim 222 CSE
Josepth 333 CSE
Ragu 4433 MCA
Arun 4333 MCA

Result:

Thus, the select statements with different options like between…and, in, not in, like, relational
operator, logical operator has been executed and the outputs are verified.

 Page 30 of 84

6. Aggregate Functions
(count, maximum, minimum, sum, average, order by, group by, having)

Aim:
 To, understand the aggregate functions like count, Minimum, maximum, sum and average
along with order by and group by and having clauses.

Queries: [Note: Use the previously created table std2.]

Order by:

[To sort the records in ascending or descending order based on a particular field]

SQL> select sname, roll, dept from std2 order by dept, sname;

SNAME ROLL DEP
Josepth 333 CSE
Kanthi 5353 CSE
Mathi 6363 CSE
Rahim 222 CSE
Ram 111 CSE
Arunchalam 2222 ECE
Banu 55 ECE
Arun 4333 MCA
Ragu 4433 MCA
Deva 5555 MEC
Madhan 4343 MEC

11 rows selected.

[To sort it in descending order]

SQL> select sname, roll, dept from std2 order by dept desc;

SNAME ROLL DEP
Madhan 4343 MEC
Deva 5555 MEC
Ragu 4433 MCA
Arun 4333 MCA
Banu 55 ECE
Arunchalam 2222 ECE
Kanthi 5353 CSE
Mathi 6363 CSE
Ram 111 CSE
Rahim 222 CSE
Josepth 333 CSE

11 rows selected.

 Page 31 of 84

SQL> select sname, roll, dept from std2 order by dept desc, sname;

SNAME ROLL DEP
Deva 5555 MEC
Madhan 4343 MEC
Arun 4333 MCA
Ragu 4433 MCA
Arunchalam 2222 ECE
Banu 55 ECE
Josepth 333 CSE
Kanthi 5353 CSE
Mathi 6363 CSE
Rahim 222 CSE
Ram 111 CSE

11 rows selected.

SQL> select sname, roll, dept, total from std2 where dept like 'CSE' and total >220;

SNAME ROLL DEP TOTAL
Kanthi 5353 CSE 240
Josepth 333 CSE 225

Aggregate Functions:

Count:

[To count the number of records in a particular table.]

SQL> select count(dept) as Stud_strength from std2;

STUD_STRENGTH
11

Minimum:

SQL> select min(total) as Min_marks from std2;

MIN_MARKS
165

Maximum:

SQL> select max(total) as Max_marks from std2;

MAX_MARKS
240

 Page 32 of 84

Group by - sum:

SQL> select dept, sum(total) as sum_total_dept from std2 group by dept;

DEP SUM_TOTAL_DEPT
CSE 1065
ECE 405
MCA 480
MEC 420

Group by - average:

SQL> select dept, avg(total) as Total_dept_marks from std2 group by dept;

DEP TOTAL_DEPT_MARKS
CSE 213
ECE 202.5
MCA 240
MEC 210

Having Clause:

SQL> select * from placement;

PLACEMENTID ROLL DEPT COMPANY SALARY

 1 104 IT infosys 27000

 2 105 CSE Wipro 24000

 3 204 MECH Hyundai 32000

 4 102 IT infosys 29500

 5 103 CSE infosys 28000

 6 555 AGRI Annamalai 40000

6 rows selected.

SQL> select dept, sum(salary) as dept_salary from placement group by dept having sum(salary)
> 45000;

DEPT DEPT_SALARY
CSE 52000
IT 56500

 Page 33 of 84

SQL> select dept, sum(salary) as dept_salary from placement group by dept having sum(salary)
< 45000;

DEPT DEPT_SALARY
AGRI 40000
MECH 32000

SQL> select dept, sum(salary) as dept_salary from placement group by dept having
sum(salary)< 45000 order by dept_salary;

DEPT DEPT_SALARY
MECH 32000
AGRI 40000

Result:
 Thus, the aggregate functions like count, minimum, maximum, sum and average along with
order by and group by and having clauses have been written and the outputs were verified.

 Page 34 of 84

7. Join Queries
(inner join, outer join (left, right, full), equi join and non - equi join,

self-join and cartesian join or cross-join.)
Aim:
 To understand the concept of different join queries like inner join, outer join (left, right, full),
equi join, non - equi join, self-join and cartesian join or cross-join.

Concept:

 Joins: Joins are used to combine rows from two or more tables

1. Inner join An inner join or simple join is a join that returns rows of the tables that
satisfy the join condition. That is it returns all rows when there is at least
one match in both tables

2. Outer join: An outer join is a join similar to the equi join, but it will also return non-
matched rows from the table.

Left outer join Return all rows from the left table, and the matched rows from the right
table

Right outer join Return all rows from the right table, and the matched rows from the left
table

Full outer join Return all rows when there is a match in one of the tables

3. Equi join An equi join is an inner join statement that uses an equivalence operation
(i.e: colA = colB) to match rows from different tables. The converse of an
equi join is a nonequi join operation.

Non-equi join An non-equi (or theta) join is an inner join statement that uses an unequal
operation (i.e: <>, >, <, !=, BETWEEN, etc.) to match rows from different
tables. The converse of an non-equi join is a equi join operation.

4. Self join A self join is a join in which a table is joined with itself. For example,
when user require details about an employee and his manager (also an
employee).

5. Cartesian join
or cross join

A Cartesian join or Cartesian product is a join of every row of one table to
every row of another table. This normally happens when no matching join
columns are specified. For example, if table A with 5 rows is joined with
table B with 6 rows, a Cartesian join will return 30 rows.

 Page 35 of 84

Queries:

SQL> create table student

(
roll number primary key,
sname varchar(30),
dept char(5),
sem number
);

Table created.

SQL> create table placement

(
placementID number primary key,
roll number,
dept char(5),
company varchar2(30),
salary number
);

Table created.

SQL> insert into student(roll, sname, dept, sem) values(101,'ram','IT',5);

1 row created.

SQL> insert into student(roll, sname, dept, sem) values(102,'rahim','IT',3);

1 row created.

SQL> insert into student(roll, sname, dept, sem) values(103,'saravanan','CSE',3);

1 row created.

SQL> insert into student(roll, sname, dept, sem) values(104,'Nataraj','IT',3);

1 row created.

SQL> insert into student(roll, sname, dept, sem) values(105,'Elango','CSE',5);

1 row created.

SQL> select * from student;

ROLL SNAME DEPT SEM
101 ram IT 5
102 rahim IT 3
103 saravanan CSE 3
104 Nataraj IT 3
105 Elango CSE 5

 Page 36 of 84

SQL> select * from placement;

PLACEMENTID ROLL DEPT COMPANY SALARY
1 104 IT infosys 25000
2 105 CSE Wipro 22000
3 204 MECH Hyundai 30000
4 102 IT infosys 25000
5 103 CSE infosys 25000

Inner Join or Join:

SQL> select * from student, placement where student.roll = placement.roll;

ROLL SNAME DEPT SEM PLACEMENTID ROLL DEPT COMPANY SALARY

104 Nataraj IT 3 1 104 IT infosys 25000

105 Elango CSE 5 2 105 CSE Wipro 22000

102 rahim IT 3 4 102 IT infosys 25000

103 saravanan CSE 3 5 103 CSE infosys 25000

SQL> select student.roll, student.sname, placement.company, placement.salary from
student, placement where student.roll = placement.roll;

ROLL SNAME COMPANY SALARY
104 Nataraj infosys 25000
105 Elango Wipro 22000
102 rahim infosys 25000
103 saravanan infosys 25000

Outer Joins:

Left outer Join:

SQL> select * from student, placement where student.roll = placement.roll(+);

ROLL SNAME DEPT SEM PLACEMENTID ROLL DEPT COMPANY SALARY

101 ram IT 5

102 rahim IT 3 4 102 IT infosys 25000

103 saravanan CSE 3 5 103 CSE infosys 25000

104 Nataraj IT 3 1 104 IT infosys 25000

105 Elango CSE 5 2 105 CSE Wipro 22000

 Page 37 of 84

SQL> select student.sname, placement.placementid, placement.roll, placement.company from
student, placement where student.roll = placement.roll(+);

SNAME PLACEMENTID ROLL COMPANY
ram

rahim 4 102 infosys
saravanan 5 103 infosys

Nataraj 1 104 infosys
Elango 2 105 Wipro

Right Outer Join:

SQL> select * from student, placement where student.roll(+) = placement.roll;

ROLL SNAME DEPT SEM PLACEMENTID ROLL DEPT COMPANY SALARY

104 Nataraj IT 3 1 104 IT infosys 25000

105 Elango CSE 5 2 105 CSE Wipro 22000

 3 204 MECH Hyundai 30000

102 rahim IT 3 4 102 IT infosys 25000

103 saravanan CSE 3 5 103 CSE infosys 25000

SQL> select student.sname, placement.placementid, placement.roll, placement.company from
student, placement where student.roll(+) = placement.roll;

SNAME PLACEMENTID ROLL COMPANY
Nataraj 1 104 infosys
Elango 2 105 Wipro

 3 204 Hyundai
rahim 4 102 infosys

saravanan 5 103 infosys
Full Outer Join:

SQL> select * from student, placement where student.roll(+) = placement.roll
 union all
 select * from student, placement where placement.roll(+) = student.roll and
 placement.roll is null;

ROLL SNAME DEPT SEM PLACEMENTID ROLL DEPT COMPANY SALARY

104 Nataraj IT 3 1 104 IT infosys 25000

105 Elango CSE 5 2 105 CSE Wipro 22000

 3 204 MECH Hyundai 30000

102 rahim IT 3 4 102 IT infosys 25000

103 saravanan CSE 3 5 103 CSE infosys 25000

101 ram IT 5

 Page 38 of 84

Equi Join:

SQL> select student.roll, student.sname, placement.company from student, placement where
student.roll = placement.roll;

ROLL SNAME COMPANY
104 Nataraj infosys
105 Elango Wipro
102 rahim Infosys
103 saravanan Infosys

Non - Equi Join:

SQL> select student.roll, student.sname, placement.company from student, placement where
student.roll > placement.roll;

ROLL SNAME COMPANY
105 Elango infosys
103 saravanan infosys
104 Nataraj infosys
105 Elango infosys
104 Nataraj infosys
105 Elango infosys

6 rows selected.

SQL> select student.roll, student.sname, placement.company from student, placement where
student.roll < placement.roll;

ROLL SNAME COMPANY
101 ram infosys
102 rahim infosys
103 saravanan infosys
101 ram Wipro
102 rahim Wipro
103 saravanan Wipro
104 Nataraj Wipro
101 ram Hyundai
102 rahim Hyundai
103 saravanan Hyundai
104 Nataraj Hyundai
105 Elango Hyundai
101 ram infosys
101 ram infosys
102 rahim infosys

15 rows selected.

 Page 39 of 84

Self Join:

SQL> create table employee

(
empid number,
empname varchar2(20),
reportingid number
);

Table created.
SQL> insert into employee values(1,'Principal',null);

1 row created.

SQL> insert into employee values(2,'HOD',1);

1 row created.

SQL> insert into employee values(3,'PO',1);

1 row created.

SQL> insert into employee values(4,'Staff',2);

1 row created.

SQL> insert into employee values(5,'N T Staff',2);

1 row created.

SQL> select * from employee;

EMPID EMPNAME REPORTINGID
1 Principal
2 HOD 1
3 PO 1
4 Staff 2
5 N T Staff 2

SQL> select e1.empid, e1.empname, e2.empname as Head_name from employee e1, employee e2
where e1.reportingid = e2.empid;

EMPID EMPNAME HEAD_NAME
2 HOD Principal
3 PO Principal
4 Staff HOD
5 N T Staff HOD

 Page 40 of 84

Cross-Join or Cartesian Join:

SQL> select * from student, placement;

 ROLL SNAME DEPT SEM PLACEMENTID ROLL DEPT COMPANY SALARY

101 ram IT 5 1 104 IT infosys 25000

102 rahim IT 3 1 104 IT infosys 25000

103 saravanan CSE 3 1 104 IT infosys 25000
104 Nataraj IT 3 1 104 IT infosys 25000
105 Elango CSE 5 1 104 IT infosys 25000

101 ram IT 5 2 105 CSE Wipro 22000

102 rahim IT 3 2 105 CSE Wipro 22000

103 saravanan CSE 3 2 105 CSE Wipro 22000
104 Nataraj IT 3 2 105 CSE Wipro 22000

105 Elango CSE 5 2 105 CSE Wipro 22000

101 ram IT 5 3 204 MECH Hyundai 30000
102 rahim IT 3 3 204 MECH Hyundai 30000
103 saravanan CSE 3 3 204 MECH Hyundai 30000

104 Nataraj IT 3 3 204 MECH Hyundai 30000
105 Elango CSE 5 3 204 MECH Hyundai 30000

101 ram IT 5 4 102 IT infosys 25000

102 rahim IT 3 4 102 IT infosys 25000
103 saravanan CSE 3 4 102 IT infosys 25000
104 Nataraj IT 3 4 102 IT infosys 25000

105 Elango CSE 5 4 102 IT infosys 25000

101 ram IT 5 5 103 CSE infosys 25000

102 rahim IT 3 5 103 CSE infosys 25000
103 saravanan CSE 3 5 103 CSE infosys 25000

104 Nataraj IT 3 5 103 CSE infosys 25000

105 Elango CSE 5 5 103 CSE infosys 25000

25 rows selected.

Result:
 Thus, the concept of different join queries like inner join, outer join (left, right, full), equi join,
non - equi join, cross-joins and self-join are executed and verified successfully.

 Page 41 of 84

8. Sub - queries
(in, not in, some, any, all, exits, not exits)

Aim:
 To understand the concept of sub-queries using the clauses like in, not in, some, any, all, exist
and not exits.

Concept:

A Sub query or Inner query or Nested query is a query within another SQL query and
embedded within the WHERE clause.

A sub query is used to return data that will be used in the main query as a condition to further
restrict the data to be retrieved.

A sub queries can be used with the SELECT, INSERT, UPDATE, and DELETE statements
along with the operators like =, <, >, >=, <=, IN, BETWEEN etc.

There are a few rules that sub queries must follow:

1. Sub queries must be enclosed within parentheses.

2. A sub query can have only one column in the SELECT clause, unless multiple columns are in the
main query for the sub query to compare its selected columns.

3. An ORDER BY cannot be used in a sub query, although the main query can use an ORDER BY.
The GROUP BY can be used to perform the same function as the ORDER BY in a sub query.

4. Sub queries that return more than one row can only be used with multiple value operators, such as
the IN operator.

5. A sub query cannot be immediately enclosed in a set function.

6. The BETWEEN operator cannot be used with a sub query; however, the BETWEEN operator can
be used within the sub query.

SOME Compares a value to each value in a list or results from a query and evaluates to
true if the result of an inner query contains at least one row. SOME must match at least
one row in the sub query and must be preceded by comparison operators. Suppose using
greater than (>) with SOME means greater than at least one value.

ANY Compares a value to each value in a list or results from a query and evaluates to
true if the result of an inner query contains at least one row. ANY must be preceded by
comparison operators.

ALL ALL is used to select all records of a SELECT STATEMENT. It compares a
value to every value in a list or results from a query. The ALL must be preceded by the
comparison operators and evaluates to TRUE if the query returns no rows. For example,
ALL means greater than every value, means greater than the maximum value. Suppose
ALL (1, 2, 3) means greater than 3.

 Page 42 of 84

IN The IN operator checks a value within a set of values separated by commas and
retrieve the rows from the table which are matching.

NOT IN The IN operator checks a value within a set of values separated by commas and
retrieve the rows from the table which are NOT matching.

EXISTS Checks the existence of a result of a sub query. The EXISTS sub query tests
whether a sub query fetches at least one row. When no data is returned then this operator
returns 'FALSE'

 A valid EXISTS sub query must contain an outer reference and it must be a
correlated sub query. The select list in the EXISTS sub query is not actually used in
evaluating the EXISTS so it can contain any valid select list

NOT
EXISTS

 It works like EXISTS, except the WHERE clause in which it is used is satisfied
if no rows are returned by the sub query.

Queries:

SQL> select * from student;

 ROLL SNAME DEPT SEM
 101 ram IT 5
 102 rahim IT 3
 103 saravanan CSE 3
 104 Nataraj IT 3
 105 Elango CSE 5

SQL> select * from placement;

PLACEMENTID ROLL DEPT COMPANY SALARY
1 104 IT infosys 25000
2 105 CSE Wipro 22000
3 204 MECH Hyundai 30000
4 102 IT infosys 25000
5 103 CSE infosys 25000

Simple Sub-query: using = and > :

SQL> select * from student where dept = (select dept from student where sname = 'ram');

 ROLL SNAME DEPT SEM
 101 ram IT 5
 102 rahim IT 3
 104 Nataraj IT 3

 Page 43 of 84

SQL> select * from student where sem > (select sem from student where sname = 'rahim');

 ROLL SNAME DEPT SEM
 101 ram IT 5
 105 Elango CSE 5

Sub-query: using ‘ in’

SQL> select * from student where dept in (select dept from student where sname = 'rahim');

 ROLL SNAME DEPT SEM
 101 ram IT 5
 104 Nataraj IT 3
 102 rahim IT 3

SQL> select sname, dept from student where roll in (select roll from placement where
company = 'infosys');

SNAME DEPT
rahim IT
saravanan CSE
Nataraj IT

Sub-query: using ‘not in’

SQL> select * from student;

 ROLL SNAME DEPT SEM
 101 ram IT 5
 102 rahim IT 3
 103 saravanan CSE 3
 104 Nataraj IT 3
 105 Elango CSE 5

SQL> select * from placement;

PLACEMENTID ROLL DEPT COMPANY SALARY
1 104 IT infosys 25000
2 105 CSE Wipro 22000
3 204 MECH Hyundai 30000
4 102 IT infosys 25000
5 103 CSE infosys 25000

 Page 44 of 84

SQL> select * from student where dept not in (select dept from student where sname = 'rahim');

 ROLL SNAME DEPT SEM
 103 saravanan CSE 3
 105 Elango CSE 5

SQL> select roll, sname from student where roll not in (select roll from placement);

ROLL SNAME
 101 ram

SQL> select sname, dept from student where roll not in (select roll from placement where
company = 'infosys');

SNAME DEPT
ram IT
Elango CSE

Sub-query: using ‘ some’

SQL> select * from placement where salary < some (23000,18000);

PLACEMENTID ROLL DEPT COMPANY SALARY
2 105 CSE Wipro 22000

SQL> select * from placement where salary > some (23000,24000);

PLACEMENTID ROLL DEPT COMPANY SALARY
1 104 IT infosys 25000
3 204 MECH Hyundai 30000
4 102 IT infosys 25000
5 103 CSE infosys 25000

Note: in place ‘some’, ‘any’ can also be used to get the similar records.

Sub-query: using ‘ all’

SQL> select * from placement where salary < all (23000,28000);

PLACEMENTID ROLL DEPT COMPANY SALARY
2 105 CSE Wipro 22000

SQL> select * from placement where salary > all (23000,28000);

PLACEMENTID ROLL DEPT COMPANY SALARY
 3 204 MECH Hyundai 30000

 Page 45 of 84

Sub-query: using ‘ exists ’

SQL> select * from placement where exists (select * from placement where salary < 25000);

PLACEMENTID ROLL DEPT COMPANY SALARY

 1 104 IT infosys 25000

 2 105 CSE Wipro 22000

 3 204 MECH Hyundai 30000

 4 102 IT infosys 25000

 5 103 CSE infosys 25000

Sub-query: using ‘ not exists ’

SQL> select * from placement where not exists (select * from placement where salary
<25000);

no rows selected

Result:
 Thus, the concept of sub-queries using the clauses like in, not in, some, any, all, exist and not
exits written, executed and successfully verified.

 Page 46 of 84

9. Set Operations
(union, union all, intersect, minus)

Aim:
 To perform the Set operations like union, union all, intersect and minus on tables

Concept:

Union

 The UNION operator is used to combine the result-set of two or more
SELECT statements. Each SELECT statement within the UNION must have the
same number of columns and must be in same order. The columns must also have
similar data types. The UNION operator selects only distinct values by default

Select column1 from table1 union select column1 from table2;

Union all

 The UNION operator returns only distinct rows that appear in either result,
while the UNION ALL operator returns all rows. The UNION ALL operator does not
eliminate duplicate selected rows.

Select column1 from table1 union all select column1 from table2;

Intersect
 The intersect operator returns only those rows returned by both queries.

Select column1 from table1 intersect select column1 from table2;

Minus

 The minus operator returns only rows returned by the first query but not by
the second.

Select column1 from table1 minus select column1 from table2;

Note: Use the previously created tables placement and student.

Union :

SQL> select * from placement;

PLACEMENTID ROLL DEPT COMPANY SALARY
 1 104 IT infosys 25000
 2 105 CSE Wipro 22000
 3 204 MECH Hyundai 30000
 4 102 IT infosys 25000
 5 103 CSE infosys 25000

SQL> select * from student;

ROLL SNAME DEPT SEM
 101 ram IT 5
 102 rahim IT 3
 103 saravanan CSE 3
 104 Nataraj IT 3
 105 Elango CSE 5

 Page 47 of 84

SQL> select roll from student union select roll from placement;

ROLL
101
102
103
104
105
204

6 rows selected.

Union ALL:

SQL> select roll from student union all select roll from placement;

ROLL
101
102
103
104
105
104
105
204
102
103

10 rows selected.

Intersect:

SQL> select roll from student intersect select roll from placement;

ROLL
102
103
104
105

 Minus:

SQL> select roll from student minus select roll from placement;

ROLL
101

 Page 48 of 84

SQL> select roll from placement minus select roll from student;

ROLL
204

Result:
 Thus, the SQL statements for set operations like union, union all, intersect and minus is written
and verified successfully.

 Page 49 of 84

10. Database Objects
(Synonyms, Sequences, Views, Index)

Aim:
 To understand the concept of database objects like of synonym, sequence, view and index in
oracle.

a) Synonym:

Concept:

A synonym is an alternative name for objects such as tables, views, sequences, stored
procedures, and other database objects.

Syntax

The syntax to create a synonym in Oracle is:

CREATE [OR REPLACE] [PUBLIC] SYNONYM [schema .] synonym_name

 FOR [schema .] object_name [@ dblink];

OR REPLACE allows user to recreate the synonym (if it already exists) without having to issue a
DROP synonym command.

PUBLIC means that the synonym is a public synonym and is accessible to all users. Remember though
that the user must first have the appropriate privileges to the object to use the synonym.

schema is the appropriate schema. If this phrase is omitted, Oracle assumes that users are referring to
their own schema. [Here the user name is the schema]

object_name is the name of the object for which user is creating the synonym. It can be one of the
following:

 table
 view
 sequence
 stored procedure
 function
 package
 materialized view
 java class schema object
 user-defined object
 synonym

 Page 50 of 84

Queries:

Creating synonym for Student table.

SQL> create synonym ss for student;

Synonym created.

SQL> select * from student;

and

SQL> select * from ss; [Both give the same resultant of rows.]

ROLL SNAME DEPT SEM

 1 Kanthi CSE 8

 2 Mathi IT 8

 102 Nathan CSE 8

 202 Ragupathy MCA 10

SQL> drop synonym ss;

Synonym dropped.

SQL> select * from ss;
select * from ss
 *
ERROR at line 1:
ORA-00942: table or view does not exist

 Page 51 of 84

b) Sequences:

Concept:
 In Oracle, user can create an auto number field by using sequences. A sequence is an
object in Oracle that is used to generate a number sequence. This can be useful when the user need to
create a unique number to act as a primary key.

Syntax:

Create Sequence:

CREATE SEQUENCE sequence_name

 MINVALUE value

 MAXVALUE value

 START WITH value

 INCREMENT BY value

 CACHE value;

To retrieve the next value in the sequence order, sequence_name.NEXTVAL is used.

In sequence, the cache option specifies how many sequence values will be stored in memory
for faster access. Also, Creating the same sequence with the NOCACHE is also allowed.

Drop Sequence

Sequence can dropped using

DROP SEQUENCE sequence_name;

Queries:

Note: Use the previously created “student” table structure. If there is any record, delete all the records
from the table.

Sequence Creation:
SQL> create sequence roll_seq minvalue 1 start with 1 increment by 1 cache 20;

Sequence created.

If there is any record, truncate the rows.

 Page 52 of 84

SQL> truncate table student;

Table truncated.

SQL> select * from student;

no rows selected

SQL> insert into student values (roll_seq.nextval,'Kanthi','CSE',8);

1 row created.

SQL> insert into student values (roll_seq.Nextval,'Mathi','IT',8);

1 row created.

SQL> alter sequence roll_seq increment by 100;

Sequence altered.

SQL> insert into student values(roll_seq.nextval,'Nathan','CSE',8);

1 row created.

SQL> insert into student values(roll_seq.nextval,'Ragupathy','MCA',10);

1 row created.

SQL> select * from student;

ROLL SNAME DEPT SEM

 1 Kanthi CSE 8

 2 Mathi IT 8

 102 Nathan CSE 8

 202 Ragupathy MCA 10

SQL> drop sequence roll_seq;

Sequence dropped.

SQL> insert into student values(roll_seq.nextval,'Raman','MECH',5);
insert into student values(roll_seq.nextval,'Raman','MECH',5)
 *
ERROR at line 1:
ORA-02289: sequence does not exist

 Page 53 of 84

c) Views:

Concept:

 A VIEW is a virtual table, through which a selective portion of the data from one or more
tables can be seen just like a real table. Views do not contain data of their own. SQL functions,
WHERE, and JOIN statements can be added to a view and present the data as if the data were coming
from one single table. They are used to restrict access to the database or to hide data complexity. A
view is stored as a SELECT statement in the database. DML operations on a view like INSERT,
UPDATE, DELETE affects the data in the original table upon which the view is based. A view always
shows up-to-date data! The database engine recreates the data, using the view's SQL statement, every
time a user queries a view.

Note: Use the tables’ placement and student for creating views.

Queries:

SQL> select * from placement;

PLACEMENTID ROLL DEPT COMPANY SALARY
 1 104 IT infosys 25000
 2 105 CSE Wipro 22000
 3 204 MECH Hyundai 30000
 4 102 IT infosys 25000
 5 103 CSE infosys 25000

SQL> select * from student;

ROLL SNAME DEPT SEM
 101 ram IT 5
 102 rahim IT 3
 103 saravanan CSE 3
 104 Nataraj IT 3
 105 Elango CSE 5

SQL> create view placeview as
 (select roll, dept, company from placement where salary > 25000);

View created.

SQL> select * from placeview;

ROLL DEPT COMPANY
204 MECH Hyundai

 Page 54 of 84

SQL> create view studview as
(select student.roll, student.sname, student.dept, student.sem, placement.company,
placement.salary from student, placement where student.roll = placement.roll);

SQL> select * from studview;

ROLL SNAME DEPT SEM Company Salary
104 Nataraj IT 3 infosys 25000
105 Elango CSE 5 Wipro 22000
102 rahim IT 3 infosys 25000
103 saravanan CSE 3 infosys 25000

SQL> insert into placement (placementid, roll, dept, company, salary) values (6, 106, 'CSE',
'infosys',25000);

1 row created.

SQL> select * from placement;

PLACEMENTID ROLL DEPT COMPANY SALARY

1 104 IT infosys 25000

2 105 CSE Wipro 22000

3 204 MECH Hyundai 30000

4 102 IT infosys 25000

5 103 CSE infosys 25000

6 106 CSE infosys 25000

SQL> insert into student (roll, sname, dept, sem) values (106, 'kannan', 'CSE', 5);

1 row created.

SQL> select * from student;

ROLL SNAME DEPT SEM

101 ram IT 5

102 rahim IT 3

103 saravanan CSE 3

104 Nataraj IT 3

105 Elango CSE 5

106 kannan CSE 5

 Page 55 of 84

SQL> select * from studview;

ROLL SNAME DEPT SEM Company Salary
104 Nataraj IT 3 infosys 25000
105 Elango CSE 5 Wipro 22000
102 rahim IT 3 infosys 25000
103 saravanan CSE 3 infosys 25000
106 kannan CSE 5 infosys 25000

SQL> delete from studview where roll = 106;

1 row deleted.

SQL> select * from placement;

PLACEMENTID ROLL DEPT COMPANY SALARY

1 104 IT infosys 25000

2 105 CSE Wipro 22000

3 204 MECH Hyundai 30000

4 102 IT infosys 25000

5 103 CSE infosys 25000

SQL> update studview set salary = 27500 where roll = 102;

1 row updated.

SQL> select * from studview;

ROLL SNAME DEPT SEM Company Salary
104 Nataraj IT 3 infosys 25000
105 Elango CSE 5 Wipro 22000
102 rahim IT 3 infosys 27500
103 saravanan CSE 3 infosys 25000

SQL> select * from placement;

PLACEMENTID ROLL DEPT COMPANY SALARY

1 104 IT infosys 25000

2 105 CSE Wipro 22000

3 204 MECH Hyundai 30000

4 102 IT infosys 27500

5 103 CSE infosys 25000

 Page 56 of 84

SQL> drop view studview;

View dropped.

SQL> select * from studview;
select * from studview
 *
ERROR at line 1:
ORA-00942: table or view does not exist

 Page 57 of 84

d) Index:

Concept:

Indexes are special lookup tables that the database search engine can use to speed up data
retrieval. Simply put, an index is a pointer to data in a table. An index in a database is very similar to
an index in the back of a book.

An index helps speed up SELECT queries and WHERE clauses, but it slows down data input,
with UPDATE and INSERT statements. Indexes can be created or dropped with no effect on the data.

Creating an index involves the CREATE INDEX statement, which allows user to name the
index, to specify the table and which column or columns to index, and to indicate whether the index is
in ascending or descending order.

Indexes can also be unique, similar to the UNIQUE constraint, in that the index prevents
duplicate entries in the column or combination of columns on which there's an index.

CREATE INDEX index_name ON table_name;

Single-Column Indexes:

A single-column index is one that is created based on only one table column. The basic syntax
is as follows:

CREATE INDEX index_name
ON table_name (column_name);

Unique Indexes:

Unique indexes are used not only for performance, but also for data integrity. A unique index
does not allow any duplicate values to be inserted into the table. The basic syntax is as follows:

CREATE UNIQUE INDEX index_name
on table_name (column_name);

Composite Indexes:

A composite index is an index on two or more columns of a table. The basic syntax is as follows:

CREATE INDEX index_name
on table_name (column1, column2);

Whether to create a single-column index or a composite index, take into consideration the
column(s) that user may use very frequently in a query's WHERE clause as filter conditions.

Should there be only one column used, a single-column index should be the choice. Should
there be two or more columns that are frequently used in the WHERE clause as filters, the composite
index would be the best choice.

 Page 58 of 84

Implicit Indexes:

Implicit indexes are indexes that are automatically created by the database server when an
object is created. Indexes are automatically created for primary key constraints and unique constraints.

The DROP INDEX Command:

An index can be dropped using SQL DROP command. Care should be taken when dropping
an index because performance may be slowed or improved.

The basic syntax is as follows:

DROP INDEX index_name;

Situations in which Indexes to be avoided:

Although indexes are intended to enhance a database's performance, there are times when they
should be avoided. The following guidelines indicate when the use of an index should be reconsidered:

 Indexes should not be used on small tables.
 Tables that have frequent, large batch update or insert operations.
 Indexes should not be used on columns that contain a high number of NULL values.
 Columns that are frequently manipulated should not be indexed.

Query:

SQL> create index rroll on placement(roll);

Index created.

SQL> create index rroll2 on placement(roll) global partition by range(roll)
 (partition a values less than (200),
 partition b values less than (500),
 partition c values less than (maxvalue));

Index created.

SQL> drop index rroll;

Index dropped.

Result:
 Thus, the concept of database objects like synonym, sequence, views and index are understood
and its usages are verified.

 Page 59 of 84

11. Cursors
Aim:
 To understand the use of cursor in oracle databases.

Concept:

Oracle creates a memory area, known as context area, for processing an SQL statement, which
contains all information needed for processing the statement, for example, number of rows processed,
etc.

A cursor is a pointer to this context area. PL/SQL controls the context area through a cursor. A
cursor holds the rows (one or more) returned by a SQL statement. The set of rows the cursor holds is
referred to as the active set.

User can name a cursor so that it could be referred to in a program to fetch and process the rows
returned by the SQL statement, one at a time. There are two types of cursors:

 Implicit cursors
 Explicit cursors

Implicit Cursors

Implicit cursors are automatically created by Oracle whenever an SQL statement is executed,
when there is no explicit cursor for the statement. Programmers cannot control the implicit cursors and
the information in it.

Whenever a DML statement (INSERT, UPDATE and DELETE) is issued, an implicit cursor is

associated with this statement. For INSERT operations, the cursor holds the data that needs to be
inserted. For UPDATE and DELETE operations, the cursor identifies the rows that would be affected.

In PL/SQL, user can refer to the most recent implicit cursor as the SQL cursor, which always

has the attributes like %FOUND, %ISOPEN, %NOTFOUND, and %ROWCOUNT. The SQL cursor
has additional attributes, %BULK_ROWCOUNT and %BULK_EXCEPTIONS, designed for use with
the FORALL statement. The following table provides the description of the most used attributes:

Attribute Description

%FOUND
Returns TRUE if an INSERT, UPDATE, or DELETE statement affected one or
more rows or a SELECT INTO statement returned one or more rows. Otherwise,
it returns FALSE.

%NOTFOUND
The logical opposite of %FOUND. It returns TRUE if an INSERT, UPDATE, or
DELETE statement affected no rows, or a SELECT INTO statement returned no
rows. Otherwise, it returns FALSE.

%ISOPEN
Always returns FALSE for implicit cursors, because Oracle closes the SQL cursor
automatically after executing its associated SQL statement.

%ROWCOUNT
Returns the number of rows affected by an INSERT, UPDATE, or DELETE
statement, or returned by a SELECT INTO statement.

 Page 60 of 84

Any SQL cursor attribute will be accessed as sql%attribute_name as shown below in the
example.

Explicit Cursors

Explicit cursors are programmer-defined cursors for gaining more control over the context
area. An explicit cursor should be defined in the declaration section of the PL/SQL Block. It is created
on a SELECT Statement, which returns more than one row.

The syntax for creating an explicit cursor is:

CURSOR cursor_name IS select_statement;

Working with an explicit cursor involves four steps:

 Declaring the cursor for initializing in the memory
 Opening the cursor for allocating memory
 Fetching the cursor for retrieving data
 Closing the cursor to release allocated memory

Declaring the Cursor

Declaring the cursor defines the cursor with a name and the associated SELECT statement. For
example:

CURSOR c_student IS SELECT roll, sname, dept FROM student;

Opening the Cursor

Opening the cursor allocates memory for the cursor and makes it ready for fetching the rows
returned by the SQL statement into it. For example, we will open above-defined cursor as follows:

OPEN c_student;

Fetching the Cursor

Fetching the cursor involves accessing one row at a time. For example we will fetch rows from
the above-opened cursor as follows:

FETCH c_student into c_roll, c_sname, c_dept;

Closing the Cursor

Closing the cursor means releasing the allocated memory. For example, we will close above-
opened cursor as follows:

CLOSE c_student;

 Page 61 of 84

Queries:

Implicit Cursor:

SQL> select * from placement;

PLACEMENTID ROLL DEPT COMPANY SALARY

1 104 IT infosys 25000

2 105 CSE Wipro 22000

3 204 MECH Hyundai 30000

4 102 IT infosys 27500

5 103 CSE infosys 25000

Type the following statements in the notepad and save it as cursor1.lst

DECLARE
 total_rows number(2);
 BEGIN
 UPDATE placement SET salary = salary + 500;
 IF sql%notfound THEN
 dbms_output.put_line('no customers selected');
 ELSIF sql%found THEN
 total_rows := sql%rowcount;
 dbms_output.put_line(total_rows || ' students salary updated ');
 END IF;
 END;
/

Note: Type ‘ / ‘ at the end of the last executable statement in the PL/SQL block and leave empty line
after it to avoid the error “Input truncated to 1 characters”

Set Serveroutput [On | Off] is used to enable or disable the output made by the
DBMS_OUTPUT package to display it in the user screen.

SQL> set serveroutput on;

SQL> @g:\oracle\cursor1.lst;

5 students salary updated

PL/SQL procedure successfully completed.

 Page 62 of 84

SQL> select * from placement;

PLACEMENTID ROLL DEPT COMPANY SALARY

1 104 IT infosys 25500

2 105 CSE Wipro 22500

3 204 MECH Hyundai 30500

4 102 IT infosys 28000

5 103 CSE infosys 25500

SQL> select * from student;

ROLL SNAME DEPT SEM

101 ram IT 5

102 rahim IT 3

103 saravanan CSE 3

104 Nataraj IT 3

105 Elango CSE 5

106 kannan CSE 5

Explicit Cursor:

Type the following statements in the notepad and save it as cursor2.lst

DECLARE
 c_roll student.roll%type;
 c_sname student.sname%type;
 c_dept student.dept%type;
 CURSOR c_student is SELECT roll, sname, dept FROM student;
BEGIN
 OPEN c_student;
 LOOP
 FETCH c_student into c_roll, c_sname, c_dept;
 EXIT WHEN c_student%notfound;
 dbms_output.put_line(c_roll || ' ' || c_sname || ' ' || c_dept);
 END LOOP;
 CLOSE c_student;
END;
/

 Page 63 of 84

SQL> @g:\oracle\cursor2.lst;

ROLL SNAME DEPT
101 ram IT
102 rahim IT
103 saravanan CSE
104 Nataraj IT
105 Elango CSE
106 kannan CSE

PL/SQL procedure successfully completed.

Result:
 Thus, the PL/SQL for cursor in oracle is written and executed successfully.

 Page 64 of 84

12. a) Procedures
Aim:
 To understand the concept of procedures in oracle

Concept:

A subprogram is a program unit/module that performs a particular task. These subprograms are
combined to form larger programs. This is basically called the 'Modular design'. A subprogram can be
invoked by another subprogram or program, which is called the calling program.

A subprogram can be created:

 At schema level
 Inside a package
 Inside a PL/SQL block

A schema level subprogram is a standalone subprogram. It is created with the CREATE

PROCEDURE or CREATE FUNCTION statement. It is stored in the database and can be deleted with
the DROP PROCEDURE or DROP FUNCTION statement.

A subprogram created inside a package is a packaged subprogram. It is stored in the database

and can be deleted only when the package is deleted with the DROP PACKAGE statement.

PL/SQL subprograms are named PL/SQL blocks that can be invoked with a set of parameters.

PL/SQL provides two kinds of subprograms:
 Functions: these subprograms return a single value, mainly used to compute and return a

value.
 Procedures: these subprograms do not return a value directly, mainly used to perform an

action.

Parts of a PL/SQL Subprogram

Each PL/SQL subprogram has a name, and may have a parameter list. Like anonymous
PL/SQL blocks and, the named blocks a subprograms will also have following three parts:

Declarative Part:
 It is an optional part. However, the declarative part for a subprogram does not start with the
DECLARE keyword. It contains declarations of types, cursors, constants, variables, exceptions, and
nested subprograms. These items are local to the subprogram and cease to exist when the subprogram
completes execution.

Executable Part:
 This is a mandatory part and contains statements that perform the designated action.

Exception-handling:
 This is again an optional part. It contains the code that handles run-time errors.

Creating a Procedure

A procedure is created with the CREATE OR REPLACE PROCEDURE statement. The
simplified syntax for the CREATE OR REPLACE PROCEDURE statement is as follows:

 Page 65 of 84

CREATE [OR REPLACE] PROCEDURE procedure_name
[(parameter_name [IN | OUT | IN OUT] type [, ...])]
{IS | AS}
BEGIN
 < procedure_body >
END procedure_name;

where,

 procedure-name specifies the name of the procedure.

 [OR REPLACE] option allows modifying an existing procedure.

 The optional parameter list contains name, mode and types of the parameters. IN represents
that value will be passed from outside and OUT represents that this parameter will be used to
return a value outside of the procedure.

 procedure-body contains the executable part.

 The AS keyword is used instead of the IS keyword for creating a standalone procedure.

Queries:

The following statement creates a simple procedure that displays the string 'Hello World!' on
the screen when executed.

CREATE OR REPLACE PROCEDURE greetings
AS
BEGIN
 dbms_output.put_line('Hello World!');
END;

/

Execute the above code using SQL prompt to produce the following result.

Procedure created.

 Page 66 of 84

Executing a Standalone Procedure

A standalone procedure can be called in two ways:

 Using the EXECUTE keyword
 Calling the name of the procedure from a PL/SQL block

The above procedure named 'greetings' can be called with the EXECUTE keyword as:

SQL> EXECUTE greetings;

The above call would display:

Hello World

PL/SQL procedure successfully completed.

The procedure can also be called from another PL/SQL block:

BEGIN
 greetings;
END;
/

The above call would display:

Hello World

PL/SQL procedure successfully completed.

Deleting a Standalone Procedure

A standalone procedure is deleted with the DROP PROCEDURE statement. Syntax for
deleting a procedure is:

SQL> DROP PROCEDURE procedure-name;

The procedure can also be deleted from another PL/SQL block

BEGIN
 DROP PROCEDURE greetings;
END;
/

 Page 67 of 84

Parameter Modes in PL/SQL Subprograms

IN:
 An IN parameter allow to pass a value to the subprogram. It is a read-only parameter. Inside
the subprogram, an IN parameter acts like a constant. It cannot be assigned a value. It can only pass a
constant, literal, initialized variable, or expression as an IN parameter. It can also initialize it to a
default value; however, in that case, it is omitted from the subprogram call. It is the default mode of
parameter passing. Parameters are passed by reference.

OUT:
 An OUT parameter returns a value to the calling program. Inside the subprogram, an OUT
parameter acts like a variable. It can change its value and reference the value after assigning it. The
actual parameter must be variable and it is passed by value.

IN OUT:
 An IN OUT parameter passes an initial value to a subprogram and returns an updated value to
the caller. It can be assigned a value and its value can be read.
The actual parameter corresponding to an IN OUT formal parameter must be a variable, not a constant
or an expression. Formal parameter must be assigned a value. Actual parameter is passed by value.

Procedure 1: IN & OUT Mode

This program finds the minimum of two values, here procedure takes two numbers using IN
mode and returns their minimum using OUT parameters.

DECLARE
 a number;
 b number;
 c number;

PROCEDURE findMin(x IN number, y IN number, z OUT number) IS
BEGIN
 IF x < y THEN
 z:= x;
 ELSE
 z:= y;
 END IF;
END;

BEGIN
 a:= 23;
 b:= 45;
 findMin(a, b, c);
 dbms_output.put_line(' Minimum of (23, 45) : ' || c);
END;
/

When the above code is executed at SQL prompt, it produces the following result:

 Page 68 of 84

 Minimum of (23, 45) : 23

PL/SQL procedure successfully completed.

Procedure 2: IN & OUT Mode

This procedure computes the square of value of a passed value. This example shows how we

can use same parameter to accept a value and then return another result.

DECLARE
 a number;
PROCEDURE squareNum(x IN OUT number) IS
BEGIN
 x := x * x;
END;
BEGIN
 a:= 23;
 squareNum(a);
 dbms_output.put_line(' Square of (23): ' || a);
END;
/

Above code is executed at SQL prompt, to produces the following result:

Square of (23): 529

PL/SQL procedure successfully completed.

Result:

Thus, the SQL function is written and executed successfully.

 Page 69 of 84

12. b) Functions
Aim:
 To understand the concept of functions in oracle

Concept:

A PL/SQL function is same as a procedure except that it returns a value.

Creating a Function

A standalone function is created using the CREATE FUNCTION statement. The simplified
syntax for the CREATE OR REPLACE PROCEDURE statement is as follows:

CREATE [OR REPLACE] FUNCTION function_name
[(parameter_name [IN | OUT | IN OUT] type [, ...])]
RETURN return_datatype
{IS | AS}
BEGIN
 < function_body >
END [function_name];

where,

 function-name specifies the name of the function.

 [OR REPLACE] option allows modifying an existing function.

 The optional parameter list contains name, mode and types of the parameters. IN represents
that value will be passed from outside and OUT represents that this parameter will be used to
return a value outside of the procedure.

 The function must contain a return statement.

 RETURN clause specifies that data type users are going to return from the function.

 function-body contains the executable part.

 The AS keyword is used instead of the IS keyword for creating a standalone function.

Procedure 1:

CREATE OR REPLACE FUNCTION totalstudent
RETURN number IS
 total number(2) := 0;
BEGIN
 SELECT count(*) into total FROM student;
 RETURN total;
END;
/

Type the above statements in the notepad and save it as procedure1.lst

 Page 70 of 84

SQL> @g:\oracle\procedure1.lst;

Function created.

Calling a Function

To create a function, give a definition of what the function has to do. To use a function, call
that function to perform the defined task from the main function or from outside. When a program
calls a function, program control is transferred to the called function or main function.

A called function performs defined task and when its return statement is executed or when it
last end statement is reached, it returns program control back to the main program.

To call a function, simply pass the required parameters along with function name and function
returned value could be stored.

Procedure 2:

DECLARE
 c number(2);
BEGIN
 c := totalstudent();
 dbms_output.put_line('Total no. of students : ' || c);
END;
/

Type the above statements in the notepad and save it as procedure2.lst

SQL> @g:\oracle\procedure2.lst;

Total no. of Customers: 6

PL/SQL procedure successfully completed.

Result:
 Thus, the SQL function is written and executed successfully.

 Page 71 of 84

13. Triggers
Aim:
 To understand the concept of a trigger in oracle.
Concept:

Triggers are stored programs, which are automatically executed or fired when some events occur.
Triggers are written to be executed in response to any of the following events:

A database manipulation (DML) statement (DELETE, INSERT, or UPDATE).

 A database definition (DDL) statement (CREATE, ALTER, or DROP).
 A database operation (SERVERERROR, LOGON, LOGOFF, STARTUP, or SHUTDOWN).

Triggers could be defined on the table, view, schema, or database with which the event is
associated.

Benefits of Triggers

Triggers can be written for the following purposes:

 Generating some derived column values automatically.
 Enforcing referential integrity.
 Event logging and storing information on table access.
 Auditing.
 Synchronous replication of tables.
 Imposing security authorizations.
 Preventing invalid transactions.

Creating Triggers

The syntax for creating a trigger is:

CREATE [OR REPLACE] TRIGGER trigger_name
{BEFORE | AFTER | INSTEAD OF }
{INSERT [OR] | UPDATE [OR] | DELETE}
[OF col_name]
ON table_name
[REFERENCING OLD AS o NEW AS n]
[FOR EACH ROW]
WHEN (condition)
DECLARE
 Declaration-statements
BEGIN
 Executable-statements
EXCEPTION
 Exception-handling-statements
END;

where,

 CREATE [OR REPLACE] TRIGGER trigger_name: Creates or replaces an existing trigger
with the trigger_name.

 Page 72 of 84

 {BEFORE | AFTER | INSTEAD OF} : This specifies when the trigger would be executed. The
INSTEAD OF clause is used for creating trigger on a view.

 {INSERT [OR] | UPDATE [OR] | DELETE}: This specifies the DML operation.

 [OF col_name]: This specifies the column name that would be updated.

 [ON table_name]: This specifies the name of the table associated with the trigger.

 [REFERENCING OLD AS o NEW AS n]: This allows user to refer new and old values for
various DML statements, like INSERT, UPDATE, and DELETE.

 [FOR EACH ROW]: This specifies a row level trigger, i.e., the trigger would be executed for
each row being affected. Otherwise the trigger will execute just once when the SQL statement
is executed, which is called a table level trigger.

 WHEN (condition): This provides a condition for rows for which the trigger would fire. This
clause is valid only for row level triggers.

Queries:

The following program creates a row level trigger for the student table that would fire for
INSERT or UPDATE or DELETE operations performed on the student table. The trigger will display
the salary difference between the old values and new values.

CREATE OR REPLACE TRIGGER display_salary_changes
BEFORE DELETE OR INSERT OR UPDATE ON placement
FOR EACH ROW
WHEN (NEW.roll > 0)
DECLARE
 sal_diff number;
BEGIN
 sal_diff := :NEW.salary - :OLD.salary;
 dbms_output.put_line('Old salary: ' || :OLD.salary);
 dbms_output.put_line('New salary: ' || :NEW.salary);
 dbms_output.put_line('Salary difference: ' || sal_diff);
END;
/

Type the above statements in the notepad and save it as Trigger1.lst

SQL> @g:\oracle\trigger1.lst;

Trigger created.

 Page 73 of 84

Note:

 OLD and NEW references are not available for table level triggers, rather use them for record
level triggers.

 To query the table in the same trigger, then it should use the AFTER keyword, because triggers
can query the table or change it again only after the initial changes are applied and the table is
back in a consistent state.

 Above trigger has been written in such a way that it will fire before any DELETE or INSERT
or UPDATE operation on the table, but trigger can be written on a single or multiple
operations, for example BEFORE DELETE, which will fire whenever a record will be deleted
using DELETE operation on the table.

Triggering a Trigger:

Note: Use the previously created placement table or create with the following data.

SQL> select * from placement;

PLACEMENTID ROLL DEPT COMPANY SALARY

1 104 IT infosys 27000

2 105 CSE Wipro 22000

3 204 MECH Hyundai 30000

4 102 IT infosys 27500

5 103 CSE infosys 25000

SQL> insert into placement values (6,555,'AGRI','Annamalai',40000);

Old salary:
New salary: 40000
Salary difference:

1 row created.

SQL> select * from placement;

PLACEMENTID ROLL DEPT COMPANY SALARY

1 104 IT infosys 27000

2 105 CSE Wipro 22000

3 204 MECH Hyundai 30000

4 102 IT infosys 27500

5 103 CSE infosys 25000

6 555 AGRI Annamalai 40000

6 rows selected.

 Page 74 of 84

SQL> update placement set salary = salary + 1000 where roll = 103;

Old salary: 27000
New salary: 28000
Salary difference: 1000

1 row updated.

SQL> select * from placement;

PLACEMENTID ROLL DEPT COMPANY SALARY

1 104 IT infosys 27000

2 105 CSE Wipro 22000

3 204 MECH Hyundai 30000

4 102 IT infosys 27500

5 103 CSE infosys 26000

6 555 AGRI Annamalai 40000

6 rows selected.

Result:
 Thus, the trigger is created and its functions are studied and verified successfully.

 Page 75 of 84

14. Exceptions
Aim:
 To understand the concept of exception handling mechanism in PL/SQL.

Concept:

An error condition during a program execution is called an exception in PL/SQL. PL/SQL supports

programmers to catch such conditions using EXCEPTION block in the program and an appropriate
action is taken against the error condition. There are two types of exceptions:

 System-defined exceptions
 User-defined exceptions

Syntax for Exception Handling:

DECLARE
 <declarations section>
BEGIN
 <executable command(s)>
EXCEPTION
 <exception handling goes here >
 WHEN exception1 THEN
 exception1-handling-statements
 WHEN exception2 THEN
 exception2-handling-statements
 WHEN exception3 THEN
 exception3-handling-statements

 WHEN others THEN
 exception3-handling-statements
END;

The default exception will be handled using WHEN others THEN.

Note: Use the previously created placement table or create with the following data.

SQL> select * from placement;

PLACEMENTID ROLL DEPT COMPANY SALARY

1 104 IT infosys 27000

2 105 CSE Wipro 22000

3 204 MECH Hyundai 30000

4 102 IT infosys 27500

5 103 CSE infosys 25000

 Page 76 of 84

Exception 1:

Type the below statements in the notepad and save it as Exception1.lst

DECLARE
 c_placementid placement.placementid%type := 8;
 c_roll placement.roll%type;
 c_dept placement.dept%type;
BEGIN
 SELECT roll, dept INTO c_roll, c_dept FROM placement WHERE placementid =
c_placementid;
 DBMS_OUTPUT.PUT_LINE ('PlacementID: '|| c_placementid);
 DBMS_OUTPUT.PUT_LINE ('Dept: ' || c_dept);
EXCEPTION
 WHEN no_data_found THEN
 dbms_output.put_line('No such Student Record Present!');
 WHEN others THEN
 dbms_output.put_line('Error!');
END;
/

SQL> @g:\oracle\Exception1.lst;

No such Student Record Present!

PL/SQL procedure successfully completed.

Change the 2nd line in the above as

“c_placementid placement.placementid%type := 5; “

SQL> @g:\oracle\Exception1.lst;

PlacementID: 5
Dept: CSE

PL/SQL procedure successfully completed.

Raising Exceptions

The database server raises exceptions automatically whenever there is any internal database
error, but the programmer can raise exceptions explicitly by using the command RAISE.

 Page 77 of 84

Syntax of raising an exception:

DECLARE
 exception_name EXCEPTION;
BEGIN
 IF condition THEN
 RAISE exception_name;
 END IF;
EXCEPTION
 WHEN exception_name THEN
 statement;
END;

User can use above syntax in raising Oracle standard exception or any user-defined exception.

User-defined Exceptions

 PL/SQL allows users to define their own exceptions according to the

need of the program. A user-defined exception must be declared and then raised explicitly, using either
a RAISE statement or the procedure DBMS_STANDARD.RAISE_APPLICATION_ERROR.

The syntax for declaring an exception:

DECLARE my-exception EXCEPTION;

Note: Use the previously created student table or create with the following data

SQL> select * from student;

ROLL SNAME DEPT SEM

101 Ram IT 5

102 Rahim IT 3

103 saravanan CSE 3

104 Nataraj IT 3

105 Elango CSE 5

6 rows selected

 Page 78 of 84

Exception 2:

Type the below statements in the notepad and save it as Exception2.lst

DECLARE
 c_roll student.roll%type := &cc_roll;
 c_sname student.sname%type;
 c_dept student.dept%type;

 -- user defined exception
 ex_invalid_id EXCEPTION;
BEGIN
 IF c_roll <= 0 THEN
 RAISE ex_invalid_id;
 ELSE
 SELECT sname, dept INTO c_sname, c_dept FROM student WHERE roll
= c_roll;

 DBMS_OUTPUT.PUT_LINE ('Name: '|| c_sname);
 DBMS_OUTPUT.PUT_LINE ('Dept: ' || c_dept);
 END IF;
EXCEPTION
 WHEN ex_invalid_id THEN
 dbms_output.put_line('Roll number must be greater than zero!');
 WHEN no_data_found THEN
 dbms_output.put_line('No such Student record Found!');
 WHEN others THEN
 dbms_output.put_line('Error!');
END;
/

SQL> @g:\oracle\Exception2.lst;

Enter value for cc_roll: 102

old 2: c_roll student.roll%type := &cc_roll;
new 2: c_roll student.roll%type := 102;

Name: rahim
Dept: IT

PL/SQL procedure successfully completed.

SQL> @g:\oracle\Exception2.lst;

Enter value for cc_roll: 1

old 2: c_roll student.roll%type := &cc_roll;
new 2: c_roll student.roll%type := 1;

No such Student record Found!

PL/SQL procedure successfully completed.

 Page 79 of 84

SQL> @g:\oracle\Exception2.lst;

Enter value for cc_roll: 0

old 2: c_roll student.roll%type := &cc_roll;
new 2: c_roll student.roll%type := 0;

Roll number must be greater than zero!

PL/SQL procedure successfully completed.

Result:

Thus, the concept of exception handling is studied, written and executed successfully.

 Page 80 of 84

15. Packages
Aim:
 To understand the concept of packages in oracle.

Concept:

PL/SQL packages are schema objects that groups logically related PL/SQL types, variables and

subprograms.

A package will have two mandatory parts:

 Package specification
 Package body or definition

Package Specification

The specification is the interface to the package. It just DECLARES the types, variables,

constants, exceptions, cursors, and subprograms that can be referenced from outside the package. In
other words, it contains all information about the content of the package, but excludes the code for the
subprograms.

All objects placed in the specification are called public objects. Any subprogram not in the

package specification but coded in the package body is called a private object.

User can have many global variables defined and multiple procedures or functions inside a

package.

Queries:

Note: Use the previously created student table or create with the following data

SQL> select * from student;

ROLL SNAME DEPT SEM

101 Ram IT 5

102 Rahim IT 3

103 saravanan CSE 3

104 Nataraj IT 3

105 Elango CSE 5

6 rows selected

 Page 81 of 84

Step 1: THE PACKAGE SPECIFICATION

Type the below code in the notepad and save it as “Package1.lst”

CREATE OR REPLACE PACKAGE stud_package AS
 -- Adds a student record
 PROCEDURE addstudent(p_roll student.roll%type,
 p_sname student.sname%type,
 p_dept student.dept%type,
 p_sem student.sem%type);

 -- Removes a student record
 PROCEDURE delstudent(p_roll student.roll%TYPE);

 --Lists all student record
 PROCEDURE liststudent;

END stud_package;
/

SQL> @g:\oracle\package1.lst;

Package created.

 Page 82 of 84

Step 2: CREATING THE PACKAGE BODY

Type the below code in the notepad and save it as “Package2.lst”

CREATE OR REPLACE PACKAGE BODY stud_package AS

 PROCEDURE addstudent(p_roll student.roll%type,
 p_sname student.sname%type,
 p_dept student.dept%type,
 p_sem student.sem%type)
 IS
 BEGIN
 INSERT INTO student (roll,sname,dept,sem) VALUES (p_roll, p_sname, p_dept, p_sem);
 END addstudent;

 PROCEDURE delstudent(p_roll student.roll%type) IS
 BEGIN
 DELETE FROM student WHERE roll = p_roll;
 END delstudent;

 PROCEDURE liststudent IS

 CURSOR p_student is SELECT sname FROM student;

 TYPE s_list is TABLE OF student.sname%type;
 name_list s_list := s_list();
 counter integer :=0;
 BEGIN
 FOR n IN p_student LOOP
 counter := counter +1;
 name_list.extend;
 name_list(counter) := n.sname;
 dbms_output.put_line('Student(' ||counter|| ') : '||name_list(counter));
 END LOOP;
 END liststudent;
END stud_package;
/

SQL> @g:\oracle\package2.lst;

Package body created.

 Page 83 of 84

Step 3 : USING THE PACKAGE

Type the below code in the notepad and save it as “Package3.lst”

DECLARE
 code student.roll%type:= &ccode;
BEGIN
 stud_package.addstudent(222, 'Rajni', 'MECH', 3);
 stud_package.addstudent(333, 'Suban', 'TECH', 7);
 stud_package.liststudent;
 dbms_output.put_line('-----------------------------');
 stud_package.delstudent(code);
 stud_package.liststudent;
END;
/

SQL> @g:\oracle\pack3.lst

Enter value for ccode: 222

 old 2: code student.roll%type:= &ccode;
new 2: code student.roll%type:= 222;

Student(1) : rahim
Student(2) : saravanan
Student(3) : Nataraj
Student(4) : Elango
Student(5) : Ram
Student(6) : Rajni
Student(7) : Suban

Student(1) : rahim
Student(2) : saravanan
Student(3) : Nataraj
Student(4) : Elango
Student(5) : Ram
Student(6) : Suban

PL/SQL procedure successfully completed.

 Page 84 of 84

SQL> select * from student;

ROLL SNAME DEPT SEM

102 Rahim IT 3

103 saravanan CSE 3

104 Nataraj IT 3

105 Elango CSE 5

101 Ram IT 5

333 Suban TECH 7

6 rows selected.

Result:
 Thus the concept of package specification and definition is done and successfully verified.

